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BACKGROUND:Most chemicals in commerce have not been evaluated for their carcinogenic potential. The de facto gold-standard approach to carcino-
gen testing adopts the 2-y rodent bioassay, a time-consuming and costly procedure. High-throughput in vitro assays are a promising alternative for
addressing the limitations in carcinogen screening.
OBJECTIVES: We developed a screening process for predicting chemical carcinogenicity and genotoxicity and characterizing modes of actions
(MoAs) using in vitro gene expression assays.
METHODS:We generated a large toxicogenomics resource comprising ∼ 6,000 expression profiles corresponding to 330 chemicals profiled in HepG2
(human hepatocellular carcinoma cell line) at multiple doses and replicates. Predictive models of carcinogenicity and genotoxicity were built using a
random forest classifier. Differential pathway enrichment analysis was performed to identify pathways associated with carcinogen exposure.
Signatures of carcinogenicity and genotoxicity were compared with external sources, including Drugmatrix and the Connectivity Map.

RESULTS: Among profiles with sufficient bioactivity, our classifiers achieved 72.2% Area Under the ROC Curve (AUC) for predicting carcinogenicity
and 82.3% AUC for predicting genotoxicity. Chemical bioactivity, as measured by the strength and reproducibility of the transcriptional response,
was not significantly associated with long-term carcinogenicity in doses up to 40 lM. However, sufficient bioactivity was necessary for a chemical to
be used for prediction of carcinogenicity. Pathway enrichment analysis revealed pathways consistent with known pathways that drive cancer, includ-
ing DNA damage and repair. The data is available at https://clue.io/CRCGN_ABC, and a portal for query and visualization of the results is accessible
at https://carcinogenome.org.

DISCUSSION: We demonstrated an in vitro screening approach using gene expression profiling to predict carcinogenicity and infer MoAs of chemical
perturbations. https://doi.org/10.1289/EHP3986

Introduction
Despite significant investments into cancer research over the last
decades, ∼ 1:7 million new cancer cases and 600,000 cancers
deaths were estimated in the United States in 2017 alone
(American Cancer Society 2017). Of these, 90–95% are not at-
tributable to known heritable genetic factors, thus making envi-
ronmental exposures a major suspect in driving cancer (Anand
et al. 2008), notwithstanding recent studies pointing to the rate of
cell replications as an important determinant of cancer develop-
ment among different tissue types (Tomasetti and Vogelstein
2015; Tomasetti et al. 2017). Most research aimed at assessing
cancer hazard from chemical exposure has primarily relied on ep-
idemiological studies of past human exposures to suspected carci-
nogens in cancer clusters and on carcinogen screening based on
the 2-y rodent-based bioassay. Epidemiological studies rely on
observational data, and as such, it is often difficult to rule out the
possibility of spurious associations due to confounding effects.
They also require that exposure to a suspected carcinogen is doc-
umentable. Even when the nature of the chemical exposure and
the exposure dose is known, epidemiological studies require long

follow-up periods; hence, they are not appropriate for the evalua-
tion of new chemicals on the market. Similarly, the 2-y rodent
bioassay, the gold standard for carcinogen testing, is time-
consuming and requires up to $4million and >800 animals per
compound (Hodgson 2004; Meister 2005; Waters et al. 2010). As
a result, <2% of the ∼ 85,000 chemicals registered in the Toxic
Substances Control Act Chemical Substance Inventory have been
tested by this approach (Bucher and Portier 2004; Gold et al.
2005; Huff et al. 2008).

High-throughput transcriptional profiles from short-term chem-
ical exposures have proven useful for predicting long-term carci-
nogenicity and for capturing multiple biological modes of actions
(MoAs) of long-term carcinogenicity. Many studies have explored
the use of high-throughput transcriptional profiling in rodent
models (Eichner et al. 2013; Ellinger-Ziegelbauer et al. 2008;
Fielden et al. 2007; Gusenleitner et al. 2014; Kossler et al.
2015; Nie et al. 2006; Uehara et al. 2011). However, questions
remain about the relevance of rodent models for characterizing
human carcinogenicity, and most importantly, they are still
excessively time-consuming and expensive for large-scale test-
ing. In vitro–based screens would help address the time and
cost constraints of carcinogen testing through automated high-
throughput plating, exposure treatment, and assaying. The U.S.
Environmental Protection Agency’s Toxcast (https://www.epa.
gov/chemical-research/exploring-toxcast-data-downloadable-data)
(Judson et al. 2010; Richard et al. 2016) and Tox21 (https://tox21.
gov/) initiatives (Schmidt 2009; Tice et al. 2013) have used vari-
ous reporter assays to characterize adverse effects across thousands
of in vitro chemical exposures. However, while these efforts use
high-throughput techniques with carefully selected gene, pathway,
and adverse response–centric end points, the number of assays and
the diversity of end points are limited. For instance, ToxCast used
624 in vitro end points mapped to 315 genes in Phase I (Judson
et al. 2010) and an additional ∼ 200 new end points in Phase II
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(Richard et al. 2016). Studies utilizing this data for the assessment
of chemical carcinogenicity have emphasized the need to expand
the assay set to better characterize diverse MoAs of certain car-
cinogens (Kleinstreuer et al. 2013). mRNA profiling, by assay-
ing the entire transcriptome, or a large portion of it, represents
a promising solution to this need by providing an agnostic view
of which genes and pathways are relevant to chemical-induced
carcinogenesis.

Given the technological advances in gene expression profiling
and the development of cost-effective sequencing platforms, oppor-
tunities arise for their use in large-scale toxicological screenings
(Reed et al. 2019; Zhang et al. 2017). One such solution is the
Luminex 1,000 (L1000) platform (https://www.luminexcorp.com/)
(Peck et al. 2006), a low-cost, high-throughput bead-based plat-
form that measures the expression of ∼ 1,000 landmark genes and
infers the remaining genes in the transcriptome by imputation. This
platform was used in the creation of the Connectivity Map (CMap)
(Subramanian et al. 2017), which now includes 1.3 million pertur-
bation profiles of drugs and small molecules and has been instru-
mental in the discovery of small-molecule MoAs. Due to its cost-
effectiveness and appropriateness for large-scale perturbation
screening, we adopted it for the profiling of chemical carcinogens.

We applied the L1000 platform to study the effects of chemi-
cal perturbations of previously validated rat liver carcinogens and
noncarcinogens in HepG2 (human hepatocellular carcinoma) cell
lines. The central hypothesis underlying our study design was
that the long-term carcinogenicity of chemicals can be accurately
predicted from gene expression profiles of short-term in vitro
models. Our approach used machine-learning techniques to build
predictive models of the long-term carcinogenicity of chemicals
based on L1000-derived gene expression profiles of human cell
lines exposed to the studied chemicals. Furthermore, we anno-
tated the in vitro–derived gene signatures by performing pathway
enrichment of carcinogens vs. noncarcinogens to identify MoAs
associated with chemical-induced carcinogenesis. Signatures
derived from this study were also compared to external gene sig-
natures and chemical annotations from knowledge bases such as
Drugmatrix (Ganter et al. 2006, 2005), CMap, and Tox21, to ver-
ify the consistency of results and expand the interpretation of
findings. An overview of our experimental design and analysis
aims is presented in Figure S1.

Methods

Chemical Selection and Annotation
In the chemical selection process, we prioritized chemicals with
long-term rodent liver carcinogenicity annotation for inclusion
in this experiment. Long-term carcinogenicity annotations were
derived from the Carcinogenic Potency Database (CPDB)
(Fitzpatrick 2008). Additional chemicals without carcinogenic-
ity annotation were included on the basis of interest to the
Superfund Research Program (environmental toxicants), pres-
ence in controversial commercial products (included for predic-
tive purposes), and evidence of binding to the aryl hydrocarbon
receptor (AhR), as the AhR is an important mediator of xenobi-
otics, including carcinogens. A complete list of chemicals and
their annotations is provided in Excel Table S1. For CPDB
annotations, the final carcinogenicity labels denote “+ ” if car-
cinogenic in rat liver (female or male) or “–” if noncarcinogenic
in both rat and mouse (in female and male) across all tested
organs in the CPDB. Genotoxicity labels denote “+ ” if muta-
genic or weakly mutagenic in the Salmonella assay, and “–”
otherwise. In total, 330 unique chemicals were used in the anal-
ysis, including 128 carcinogens, 168 noncarcinogens, 100 gen-
otoxicants, and 161 nongenotoxicants.

Chemical Procurement and Data Generation
Chemicals were procured from the Tox21 library of the National
Toxicology Program (NTP) when available, or from Sigma-
Aldrich otherwise. Compound purity and identity were confirmed
by UPLC-MS, an Acquity Classic UPLC coupled with an SQ
mass spectrometer (Waters). Purity was measured by UV absorb-
ance at 210 nm or by evaporative light scattering. Identity was
determined on a single quadrupole mass spectrometer by positive
and/or negative electrospray ionization. Mobile phase A con-
sisted of either 0.1% ammonium hydroxide or 0.05% trifluoroace-
tic acid in water, while mobile phase B consisted of either 0.1%
ammonium hydroxide or 0.06% trifluoroacetic acid in acetoni-
trile. The gradient ran from 5% to 95% mobile phase B over 2.65
min at 0:9 mL=min. An Acquity BEH C18 (Waters), 1:7 lm,
2:1× 50 mm column was used with column temperature main-
tained at 65ºC. Compounds were dissolved in dimethylsulfoxide
(DMSO) at a nominal concentration of 1mM, and 1:0 lL of this
solution was injected.

Detailed cell culture, plating, treatment and lysis protocols are
described in https://assets.clue.io/resources/sop-cell.pdf (Subramanian
et al. 2017). Briefly, HepG2 (ATCC® HB-8,065™) was used with
medium RPMI1640 (10040CV; Mediatech) supplemented with
10% v/v fetal bovine serum (F4135; Sigma-Aldrich), 1 × penicillin-
streptomycin-glutamine (Invitrogen 10378016), and incubated at
humidified 5% CO2 atmosphere at 37°C. Cell cultures were plated
with 4,000 cells (45 lL of growth medium) per well on 384-well
plates (3707; Corning) and incubated for 24 h before treatment.
Cells were treated with 5 lL of 1:100 diluted 1,000× stock com-
pound plates to final volume of 50 lL and incubated for 24 h before
lysis.

Each chemical perturbation was administered at six doses in
triplicate wells per dose and chemical combination, starting from
40 lM maximum dose (40mM stock diluted 1:1,000) for NTP
chemicals and 20 lM for chemicals procured from Sigma-Aldrich,
in series of twofold dilutions. The sole exception to the standard
dosage was 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which
had a starting dose of 50 nM due to its extreme potency. The vehi-
cle control used was DMSO with final dose of 14:1mM. Four pos-
itive controls were used (vorinostat, geldanamycin, mitoxantrone,
withaferin-a) each in final doses of 10, 3.33, and 1:00 lM, respec-
tively. Four wells on each plate were reserved for L1000 pipeline
assay controls. These include A01: bead-only control (negative
control), B01: POSAMP control (hybridization/staining positive
control), A02, and B02 (reference RNA control).

For cell lysis, 30 lL of medium was aspirated, and 25 lL
TCL Lysis Buffer (1031576; Qiagen) was added. Plates were
sealed and maintained at room temperature for 30 min and frozen
in a −80�C freezer. Following treatment and lysis, the gene
expression of the HepG2 cells was profiled using the L1000 plat-
form, a high-throughput assay that measures the expression of
∼ 1,000 landmark genes and computationally infers the expres-
sion of nonmeasured transcripts.

Following cell lysis, the exact L1000 protocol was followed as
described in Subramanian et al. 2017. Briefly, each transcript of in-
terest was targeted with upstream and downstream probe pairs with
a 20-nucleotide gene-specific region, a unique identifying barcode,
and a universal primer site. Gene-specific sequences were detected
by coupling barcodes to Luminex (https://www.luminexcorp.com/)
beads followed by ligation-mediated amplification and hybridization
of amplicon to bead. The L1000 assay measured ∼ 1,000 transcripts
using 500 unique bead colors in a process called tag duo detection
and peak deconvolution. Invariant genes were used as controls for
data quality control and normalization.

For each perturbation and landmark gene, we computed the
change in gene expression following the perturbation using a
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moderated z-score procedure as described in the CMap–L1000
workflow. Differential expression values were calculated as mod-
erated z-scores for each landmark gene and each unique perturba-
tion (chemical and dose combination) perturbation, collapsed to a
single value across replicates (Subramanian et al. 2017).

Assessing the Transcriptional Strength of a Perturbation
We used the transcriptional activity score (TAS) as a summary
measure of the impact of a chemical perturbation on landmark
gene expression. TAS integrates signature strength, defined as
the number of genes up-regulated or down-regulated by a particu-
lar perturbation above a given moderated z-score threshold, and
replicate correlation, a measurement of similarity among tripli-
cate profiles corresponding to the same perturbation (unique com-
bination of chemical, dose, cell line, time). Formally, TAS is
quantified as the geometric mean of the signature strength
(SSngene) and the replicate correlation (CCq75) in Equation 1.
SSngene is defined as the number of landmark genes (referred to as
card) with ModZadj >2 in Equation 2. ModZ is defined as the
978-element vector of replicate collapsed z-scores of landmark
genes, and nrep is the number of replicates in Equation 3. CCq75
is the 75th percentile of the Spearman’s correlation between rep-
licates in landmark space.

TAS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSngene ×max CCq75, 0ð Þp

ffiffiffiffiffiffiffiffi
978

p (1)

SSngene = cardðjmodzadjj>=2Þ (2)

modzadj =modz ×
ffiffiffiffiffiffiffiffiffi
nrep

p
(3)

TAS was calculated for each aggregated profile (one unique
score per chemical and dose combination). This metric takes
value in the [0,1] range, with higher values of TAS taken to rep-
resent a higher level of chemical bioactivity.

Statistical Tests for Comparison of Transcriptional Activity
Score across Profiles
We tested for the difference in TAS values among adjacent dose
groups using a one-tailed Wilcoxon Signed-rank test (paired dif-
ference test), with the pairing determined by the unique chemical
IDs to determine the statistical significance of strictly increased
TAS levels between adjacent and increasing dose groups.

We next tested for difference in TAS between chemicals. In
particular, for each dose rank, two-group comparisons of TAS
scores between carcinogens and noncarcinogens, and between
genotoxicants and nongenotoxicants, were conducted using one-
tailed unpaired two-sample Wilcoxon test to determine the pres-
ence and significance of increased TAS for the carcinogenic com-
pared to noncarcinogenic group, or for the genotoxic compared
to nongenotoxic group.

Equivalent in Vitro Dose (Cmax) Estimation and
Association with Transcriptional Activity Score
Finding the relationship between in vitro gene expression
responses and adverse phenotypes in vivo is an important goal of
this study. To this end, we assessed the relationship between in
vitro transcriptional bioactivity (TAS) and corresponding in vivo
dose used in the rodent bioassay from which carcinogenicity
labels were derived. Using a toxicokinetic model (Pearce et al.
2017), we estimated the equivalent in vitro dose (Cmax) corre-
sponding to the in vivo dose tested in the rat bioassay. Cmax val-
ues, maximum plasma concentrations, were estimated using a

three-compartment model in the R package httk (version 1.8; R
Project) (Pearce et al. 2017). For carcinogenic compounds, these
values were derived from the CPDB-reported median toxic dose
(TD50) administered in rats. For noncarcinogenicity compounds,
Cmax values were derived from the CPDB-reported maximum
dose administered in rats. Chemicals with missing TD50 (if carci-
nogenic) or maximum dose (if noncarcinogenic) were omitted
from this analysis. It was assumed that dosing was once per day
for 365 d. While these Cmax values were not used in the in vitro
dosing scheme, they can be used in the interpretation of the aber-
rant behavior of some of our in vitro profiles.

To determine the association between TAS, in vivo carcinoge-
nicity, and Cmax, we used the following linear regression model:

log10ðCmaxÞ ∼ a+ bTAS ×TAS+ bCARC ×CARC

+ bT:C ×TAS:CARC, (4)

where TAS denotes the mean TAS for each chemical (across six
doses), and CARC denotes the carcinogenicity status of the chem-
ical in the rodent bioassay. We tested for significance of the coef-
ficients bTAS, bCARC, and bT:C under the null hypotheses of zero-
valued coefficients (no effect).

Supervised Learning for Prediction of Carcinogenicity and
Genotoxicity
To build classifiers for the prediction of carcinogenicity and gen-
otoxicity, we used the moderated z-scores of landmark genes as
predictive features. The random forest classifier was used, as
implemented in the R package caret (Kuhn 2008). The perform-
ance of the classifier was evaluated using a resampling scheme
consisting of 25 random repeats of training on 70% of the sam-
ples and testing on the remaining 30%. The training and test set
split was performed at the chemical level, so that all replicates of
each chemical were only included either in the train or the test set,
to avoid information leakage (overfitting). To assess the effect of
chemicals’ bioactivity on the performance of the classifier, the
evaluation was repeated on different subsets of profiles corre-
sponding to different TAS thresholds (all profiles, TAS>0:2,
>0:3, >0:4). Area under the receiver operating characteristic curve
(AUC) was used for the assessment of a classifier performance, as
it is a well-established metric that captures the trade-off between
sensitivity and specificity across multiple thresholds.

We derived the top predictive features of the classifiers in the
space of landmark genes using the variable importance metric.
Variable importance was measured by the mean decrease in Gini
index (“MeanDecreaseGini”) as defined in the function “impor-
tance” in the R package randomForest (Liaw and Wiener 2002).

Final predictions of carcinogenicity and genotoxicity were
made using leave-one-(chemical)-out cross-validation (CV); that
is, at each CV iteration, a single chemical’s profiles across multi-
ple doses are left out, and a classifier is trained based on all
remaining chemicals, then applied to the prediction of the left-out
chemical’s profiles. This procedure was repeated with each of the
TAS subsets.

Deriving Pathway Signatures of Carcinogenicity
We derived pathway activity scores using the R Bioconductor
GSVA (Gene Set Variation Analysis) package (Hänzelmann et al.
2013). GSVA is a competitive test of gene set enrichment that
takes as input a gene-by-sample expression matrix and generates
a gene set–by-sample enrichment score matrix, with its entries
representing the pathway enrichment of each sample with respect
to each of a user-specified list of gene sets. Pathway enrichment
scores were calculated for pathways in the MsigDB C2 Reactome
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pathway compendium (Croft et al. 2014; Fabregat et al. 2016;
Liberzon et al. 2011). The gene set–projected matrix was then
used as input for differential analysis with respect to sample phe-
notype labels (carcinogenicity or genotoxicity) using the R
Bioconductor package limma (Ritchie et al. 2015; Smyth 2005)
to identify pathways with differences in activity levels between
chemical groups. This differential analysis was repeated from
data inputs with various TAS thresholding (TAS>0, 0.2, 0.3,
0.4). One-sided p-values consistent with the direction of change
in pathway activity scores were estimated. The p-values across
analyses from multiple TAS subsets were combined using the
Fisher's method and adjusted for multiple hypothesis testing
using false discovery rate (FDR) procedure (Benjamini and
Hochberg 1995).

Comparison to Drugmatrix Signatures
Using gene set enrichment analysis (GSEA) (Subramanian et al.
2005), we compared how well our profiles recapitulated external
signatures of carcinogenicity and genotoxicity extracted from the
NTP Drugmatrix database (Ganter et al. 2006). The Drugmatrix
is a compendium of microarray profiles of short-term chemical
exposures in intact rat organs (liver samples used only) and in
cell cultures (primary rat hepatocytes). The Drugmatrix-derived
signatures were defined as the lists of genes in the Drugmatrix
significantly associated with long-term carcinogenicity and geno-
toxicity. Data processing of the Drugmatrix data was consistent
with methods described in Gusenleitner et al. (2014). Gene fea-
tures were mapped from rat Ensembl (Zerbino et al. 2018) gene
identifiers to human gene symbols using Biomart (Durinck et al.
2005). Differential expression analysis was conducted using
limma (Ritchie et al. 2015; Smyth 2005) to identify markers of
carcinogenicity and genotoxicity after correcting for the effect of
dose and duration of exposure. For each comparison, a list of sig-
nificant genes was derived using an FDR cutoff of 0.01 and abso-
lute value of log fold change of 0.2, up to a maximum of 300
genes as ranked by FDR. Signatures of carcinogenicity and geno-
toxicity (direction sensitive: up-regulated/down-regulated) were
derived for three Drugmatrix subsets: liver profiles, cell culture
profiles, and low-dose cell culture profiles (<50 lM), the latter
consistent with the range of doses used in our experiment. The
detailed gene lists included in the Drugmatrix signatures are
documented in Excel Table S2. These gene signatures were tested
for enrichment against our L1000 profiles in various subsets
(TAS>0, 0.2, 0.3, 0.4), using the binary phenotypes of carcino-
genicity and genotoxicity and the GSEA method, with empirical
p-values estimated based on 10,000 gene set permutations.

Comparison with Connectivity Map Signatures
We performed a systematic comparison of our signatures to those
in the CMap database. To this end, we computed the connectivity
score, a measure of similarity, between pairs of signatures, in this
case, between each of our signatures and each of the perturbation
signatures in the CMap, which comprises ∼ 1:3million profiles
corresponding to 19,811 drugs and small molecules, and 5,075
molecular (gene-specific knockdown and overexpression) pertur-
bations across 3 to 77 cell lines (Subramanian et al. 2017). The
connectivity scores were expressed as percentile values in the
[−100, 100] range, wherein a score of 100 represented maximum
signature overlap, −100 represented maximum signature rever-
sal, and 0 represented lack of concordance between signatures in
either direction. Connectivity scores were computed with respect
to both individual CMap perturbagens, and perturbagen classes
(PCLs), defined as sets of perturbagens with similar MoAs or gene
target annotations. Next, we performed differential connectivity

analysis with respect to our chemical groups (carcinogens vs. non-
carcinogens, genotoxicants vs. nongenotoxicants) using a one-
tailed Wilcoxon rank-sum test to test for presence of increased
connectivity in the positive class (carcinogenic or genotoxic).
These tests were repeated for each TAS-based subset of our data,
and FDR values were calculated. A minimum mean connectivity
score of 60 for the positive class was used to filter out differential
connectivity hits with low base connectivity scores.

Investigation Of Aryl Hydrocarbon Receptor Activation in
L1000 Profiles
To examine the behavior of AhR-related chemicals included in
the study, we tested whether these chemicals exhibit enriched ac-
tivity of AhR-related gene sets compiled from independent sour-
ces. Lists of chemicals with known AhR activity were identified
using multiple AhR-related Tox 21 reporter assays extracted
from the tool Tox21 Enricher (Hur et al. 2018), or using custom
chemical annotation with expert knowledge (referenced as
“Sherr_AHR_agonist”). Lists of AhR target genes were compiled
from literature, as annotated in Excel Table S3.

A one-directional weighted Kolmogorov-Smirnov (KS) test
was performed to test for the enrichment of “AhR-positive” sam-
ples (profiles corresponding to AhR-related chemicals) among
the top-ranked profiles sorted by descending AhR gene set activ-
ity scores. The activity scores represent the median scores across
four individual AhR gene set scores calculated using GSVA.

Profiles corresponding to AhR-related chemicals in the list
“Sherr_AHR_agonist” were clustered using the similarity matrix
derived from the connectivity scores of the selected profiles (see
previous section for the calculation of connectivity scores).

Statistical Reporting
All statements indicating significance are based on threshold
of multiple hypothesis corrected a<0:05, unless otherwise
specified.

Results

Transcriptional Activity Score Analysis and
Chemical Bioactivity
We used the TAS as a proxy for chemical bioactivity. Subsequent
analyses were based on subsets of profiles at different TAS thresh-
olds (TAS>0, 0.2, 0.3, 0.4). TAS>0:2 is the standard cutoff for
sufficient bioactivity adopted by the CMap–L1000 workflow
(Subramanian et al. 2017), while TAS>0:3 and TAS>0:4 repre-
sent more stringent thresholds we used to assess the effect of
increasing bioactivity on downstream analysis, such as classifica-
tion and gene set enrichment. While the majority of our profiles
showed low transcriptional bioactivity, a substantial percent of
profiles achieved sufficient TAS. Among 330 chemicals repre-
sented across 1,972 replicated collapsed profiles, 133 chemicals
(40.3%) achieved TAS>0:2 in at least one dose, 89 chemicals
(26.97%) achieved TAS>0:3, and 63 chemicals (19.09%) achieved
TAS>0:4.

The Effect of Chemical Dose on Transcriptional Bioactivity
We performed statistical tests to compare TAS of adjacent dose
groups and to evaluate how bioactivity is affected by dose.
Statistically significantly higher TAS were found when compar-
ing dose rank 3 with rank 2 (FDR<0:01), rank 4 with 3, rank 5
with 4, and rank 6 with 5 (FDR<0:001) (Figure 1A). The con-
sistent significance of TAS differences between adjacent dose
groups implies that increasing the dose is effective at increasing
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the transcriptional bioactivity of profiles, with the maximum dose
used in this experiment yielding the highest range of TAS scores.
When binned by TAS range (Figure 1B), the monotonically
increasing dose response of TAS was apparent across all bins and
stronger for higher TAS ranges.

The Effect of Carcinogenicity and Genotoxicity on
Transcriptional Bioactivity
Next, we evaluated whether the level of a chemical bioactivity as
captured by TAS had any association with that chemical’s long-
term carcinogenicity or genotoxicity. Remarkably, carcinogenic-
ity showed no effect on TAS in all dose groups (Figure 1C). On
the other hand, genotoxicity showed a marginally significant
effect on TAS among profiles with dose rank 1 (lowest dose
group) and dose rank 6 (highest dose group), where genotoxic
chemicals had nominally significantly higher TAS compared to
nongenotoxic chemicals (p-value cutoff >0:05), although follow-
ing multiple hypothesis testing (FDR method), no groups showed
significance at FDR<0:05 (Figure S2). To discern possible mod-
eling bias due to differing maximum dose depending on the
source of chemical procurement, we repeated the test for the

effect of carcinogenicity and genotoxicity on TAS in all dose
groups in each of the two chemical groups separated by the pro-
curement sources: Group 1: Sigma-Aldrich chemicals with maxi-
mum dose of 20 lM (Figure S3A) and Group 2: NTP chemicals
with maximum dose at 40 lM (Figure S3B). Confirming the
results of the bulk analysis in Figure 1C, carcinogenicity had no
association with TAS in all dose groups for all dose ranks in the
NTP group, as well as in the Sigma-Aldrich group. In the latter
group, carcinogens had nominally significantly lower TAS com-
pared to noncarcinogens in dose ranks 2 and 3 (p-values<0:05),
but these values became nonsignificant at the (multiple hypothe-
sis corrected) FDR q-value<0:05 (FDR=0:2 for dose rank 2,
FDR=0:192 for dose rank 3).

Comparison of in Vivo Rat Bioassay Dosage with
in Vitro Bioactivity
The lack of association between TAS and carcinogenicity moti-
vated us to further investigate the relationship between the L1000
doses and the in vivo doses used in the rodent bioassay. To this
end, we tested the association between in vitro bioactivity (TAS)
and the estimated equivalent in vitro dose, Cmax (see “Methods”

Figure 1. Box plot of transcriptional activity scores (TAS) by sample subsets. (A) Box plot of TAS distributions for each dose level (rank= 1 lowest dose;
rank 6= highest dose). Numeric labels indicate the significance of paired one-sided two-group TAS comparison between adjacent dose groups, adjusted for
multiple comparisons across doses using the false discovery rate method (FDR) (* =FDR<0:05; *** =FDR<0:001) (see “Methods” section). (B) Box plot
of TAS distribution for each dose level, binned by TAS subsets. (C) Distribution of TAS grouped by chemical carcinogenicity within each dose level. p-
Values indicate the significance of unpaired one-sided two-group TAS comparison between TAS of carcinogenic chemicals and TAS of noncarcinogenic chem-
icals within each dose group. (D) Scatterplot of mean TAS per chemical and the ratio of equivalent in vitro dose (Cmax) over maximum in vitro dose (40 lM)
(see “Methods” section for Cmax calculation). Box plots in Panels A, B, and C have the following specifications: the lower, middle, upper hinges correspond-
ing to the 25th, 50th (median), and 75th percentiles, respectively; the upper and lower whiskers extend to the smaller and largest value at most 1.5 × IQR
(interquartile range) from the hinge, and data points beyond the whiskers are represented as dots.
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section), where Cmax represents the estimated in vitro dose cor-
responding to the in vivo dose tested in the rat bioassay. Cmax
estimates could be calculated for 183 of the 330 chemicals
included in our screen. The mean TAS of profiles for each chemi-
cal were plotted against the same chemical's Cmax=40 lM (the
ratio of estimated equivalent dose to the max in vitro dose)
(Figure 1D).

We tested for the association between TAS, in vivo carcino-
genicity, and Cmax, based on a linear model (Equation 4), and
we found significant effects on Cmax of TAS (bTAS = − 4:49;
p-value= 0:01), and CARC (bCARC = − 1:22; p-value = 0:001),
and nonsignificant effect of the interaction of TAS and CARC
(bT:C = 3:1; p-value = 0:16) (see “Methods” section).

As expected, TAS was negatively associated with Cmax. In
other words, chemicals that required a low equivalent dose to
elicit a carcinogenic response in the rodent bioassay tended to be
more transcriptionally active in the in vitro assay. On the other
hand, there were exceptions, as carcinogenic chemicals with low
TAS and noncarcinogenic chemicals with high TAS were
observed and can be explained by several unique pharmacoki-
netic properties.

We annotated the carcinogenic chemicals with low TAS based
on their structural group membership, in vivo dose requirement for
carcinogenicity labeling, and requirements for metabolic activation
in HepG2. Carcinogenic chemicals with low TAS tended to fall in
one or more of the following categories: a) small nitrosamines and
other alkylating agents that form DNA adducts but are not
adequately recognized by the DNA repair machinery (enriched in
Group 2, Figure 1D), b) require bioactivation by CYP2E1 and other
p450s that are not present at high levels in HepG2 cell culture (also
enriched in Group2, Figure 1D), or c) require high equivalent in
vitro dose (Cmax) to be carcinogenic, thus likely underdosed in our
in vitro assay (enriched in Group 1 in Figure 1D).

Among noncarcinogenic chemicals with high TAS, we gener-
ally noted lower overall doses used in the rodent bioassays due to
dose-limiting toxicity or early deaths at higher doses in the cancer
bioassay, e.g., cyclosporin A (immune suppression and kidney tox-
icity) (Ryffel 1992), pyrimethamine, rhodamine 6G and rotenone
(bone marrow suppression) (Abdo et al. 1988; National Toxicology
Program 1978, 1989), and hexachlorocyclopentadiene (point of
contact, pulmonary toxicity) (National Toxicology Program 1994).
Thus, if higher doses were tolerated in rodent bioassays, it is possi-
ble that some of these chemicals would elicit a carcinogenic
response in liver.

The Effect of Transcriptional Bioactivity on Prediction of
Carcinogenicity and Genotoxicity
While chemical bioactivity level was not associated with long-
term carcinogenicity, the most relevant question was whether a
chemical’s bioactivity affected the ability of its expression profile
to be predictive of carcinogenicity (and genotoxicity). To answer
this question, we built multiple classifiers based on profiles with
TAS values within various ranges, and used a random resampling
scheme to assess their prediction performance. Datasets corre-
sponding to different TAS ranges were randomly split into train
(70%) and test (30%) sets multiple times (n=25), classifiers were
built on the train sets, and predictions were made on the test sets.
The average area under the ROC curve (AUC), sensitivity, and
specificity were then estimated over the 25 random resamples.
The prediction AUC improved with higher stringencies of TAS
(Figure 2). We achieved the highest predictive accuracy within
the most stringent TAS subset (TAS>0:4), with 72:2±2:7%
[mean± standard error ðSEÞ] AUC for prediction of carcinogenic-
ity (Figure 2A), and 82:3± 1:7% AUC for prediction of genotox-
icity (Figure 2B). In addition to the AUC, we report the

sensitivity (true positive rate) and specificity (true negative rate)
at the cutoff of 0.5 in Figure S4. Higher specificities were
observed at the expense of lower sensitivities in most TAS
groups for both classifiers. This outcome is desirable for a prelim-
inary screening strategy in which a higher false-positive rate can
be tolerated.

Gene Markers for Prediction of Carcinogenicity and
Genotoxicity
Final predictive models of carcinogenicity, genotoxicity, and
genotoxicity within carcinogens were built using the entire set of
profiles with TAS>0:4. Landmark genes were ranked by variable
importance (Excel Table S4), and the top 20 genes for each
model were reported in Figure 3. In the carcinogenicity predic-
tion model, top genes included BLCAP, an apoptosis-inducing
gene, and SESN1, a target of p53 in response to DNA damage
and oxidative stress (Figure 3A). Among the top 20 landmark
genes for prediction of genotoxicity were pro-apoptotic regula-
tors such as BLCAP and BAX (Figure 3B). BAX is regulated by
p53 and has been shown to be involved in p53-mediated apopto-
sis, a hallmark of DNA damage response to genotoxic chemical
exposure. Of note, the absolute magnitude of the variable impor-
tance of top markers is model dependent—thus not comparable
between models—and is not informative about the comparative
performance of different classifiers.

The markers in Figure 3 were the most predictive features of
carcinogenicity and genotoxicity in the restricted space of the
L1000 landmark genes, and as such, are not necessarily the most
relevant to define chemicals’ MoAs. For a more thorough MoA
analysis, see the “Pathway Enrichment Analysis to Characterize
Modes of Actions of Carcinogenicity and Genotoxicity” section,
where gene set scores were derived from the expression of all
genes, including the L1000-inferred ones.

Final Predictions of Carcinogenicity and Genotoxicity in
Bioactive Profiles
Final predictions of carcinogenicity and genotoxicity were made
using a leave-one-chemical-out CV scheme, in which predictive
models were trained based on all but one chemical, and predic-
tions were made on the profiles of the left-out chemical (see
“Methods” section). This procedure was repeated for all unique
chemicals in profiles with TAS>0:4 to derive probability meas-
urements of the profile being “Positive” for either carcinogenicity
or genotoxicity (see “Methods” section) using a probability
threshold of 0.5. Prediction probabilities for carcinogenicity and
genotoxicity were reported along with the true class labels
denoted by the dot colors (Figure 4). From this representation,
we observed that predictions tended to be consistent across pro-
files of varying doses of the same chemical. Several exceptions
existed in chemicals whose prediction probabilities were close to
0.5. In addition, prediction probabilities monotonically increasing
as a function of dose were observed for some compounds, e.g.,
3'-methyl-4-dimethylaminoazobenzene showed increased proba-
bility of genotoxicity prediction with increasing dose. However,
this pattern did not generalize to all chemicals. Detailed predictions
on profiles with TAS>0:4 are summarized in Excel Table S5.

Predictions of Unlabeled Chemicals
Using the final predictive models trained on all profiles with
TAS>0:4, predictions of carcinogenicity and genotoxicity were
made for the chemicals without known CPDB annotation (Figure
S5, with detailed summary in Excel Table S6 and Excel Table
S7). The majority of unlabeled profiles were predicted “Positive”
for both carcinogenicity and genotoxicity using a probability
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threshold of 0.5. This is likely due to bias in chemical selection.
Sources of unknown chemicals include chemicals of interest to the
Superfund Research Program (likely environmental toxicants),
chemicals that were tested for either carcinogenicity or genotoxic-
ity in the CPDB but whose labels cannot be determined, and con-
troversial chemicals in commercial use (triclosan, Glycel). Many
profiles have predicted probabilities between 0.5–0.65, indicating
low confidence in prediction, potentially attributable to low bio-
activity of profiles. When restricting predictions to unlabeled
profiles with TAS>0:4 to be consistent with the subset used for
model training, the separation of ranges of prediction probabil-
ities becomes more evident. The top two ranked predicted car-
cinogens, benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene
(DMBA), are two polyaromatic hydrocarbons that have been
shown to manifest carcinogenic and genotoxic properties.

Pathway Enrichment Analysis to Characterize Modes of
Actions of Carcinogenicity and Genotoxicity
To identify pathway-level differences between carcinogens and
noncarcinogens, and similarly, between genotoxicants and nonge-
notoxicants, we performed differential pathway enrichment analy-

sis and ranked pathways according to the significance of their dif-
ferential enrichment between chemical groups. In accordance with
the breakdown of TAS subsets used in classification analysis, and
based on the observation that increasing thresholds of TAS yield
better classification performance, the differential pathway enrich-
ment analysis was repeated for each of the TAS subsets previously
considered (Excel Tables S8 and S9). With no TAS threshold
(e.g., inclusion of all profiles), only a few pathways were differ-
entially scored between carcinogens and noncarcinogens and
between genotoxicants and nongenotoxicants. With increasing
thresholds of TAS, the number of significantly expressed pathways
increased. At TAS 0.2 and above, the identity of significant path-
ways became more stable, particularly for genotoxicity-related
pathways, with many significant pathways shared across TAS>0:2,
0.3, and 0.4. To quantify the similarity of significant pathways
across TAS subsets, we measured by Jaccard index the overlapping
proportion of significant (p<0:05) pathways among all possible
TAS subset pairs, and then computed the mean Jaccard index of
each TAS subset with respect to all other TAS subsets. The mean
Jaccard index for carcinogenicity was 0.14, 0.36, 0.42, and 0.41 for
TAS>0, 0.2, 0.3, and 0.4, respectively. For genotoxicity, it was
0.23, 0.54, 0.54, and 0.52.

Figure 2. Performance of classifiers in predictive models of (A) carcinogenicity, and (B) genotoxicity. From left to right: a) Summary statistics tables of area
under the ROC curve (AUC) for each transcriptional activity score (TAS) subsets; data represented are the median, mean, and SE (standard error) of the AUC
scores; and b) box plots of AUC across resamples (n=25) for each TAS subset with the lower, middle, and upper hinges corresponding to the 25th, 50th (me-
dian), and 75th percentiles, respectively, the upper and lower whiskers extending to the smaller and largest value at most 1.5 × IQR (interquartile range) from
the hinge, and data points beyond the whiskers represented as dots. Dotted line at 0.5 represents the expected AUC of a random classifier. Labels in each TAS
group (“n= ”) represent the number of unique chemicals in the model training and validation step. c) Receiver operating characteristic (ROC) curves [false pos-
itive rate (FPR) vs. average true positive rate (TPR)]. Thick lines represent vertical averaging of ROC curves across resamples in each TAS group shown with
bars denoting the standard errors. Thin, semitransparent lines represent ROC curves of individual resamples in each TAS group.
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We derived an aggregated ranking score of differential pathway
enrichment by combining p-values across all the TAS subsets (see
“Methods” section), and the lists of differentially enriched path-
ways (combined FDR<0:05) with respect to carcinogenicity and
genotoxicity are included in Excel Tables S6 and S7, respectively.
When comparing carcinogens to noncarcinogens, we observed up-
regulation of immune-related pathways (interferon-a=b), cell death
(apoptosis-induced DNA fragmentation), DNA repair (nucleotide
excision repair), transcriptional regulation (RNA polymerase I-, II-,
and III-related activity), and cell cycle checkpoints (p53-dependent
G1 DNA damage checkpoint), and down-regulation of various
metabolism-related pathways (phase II conjugation, phase I func-

tionalization, peptide hormone biosynthesis), cell–cell organi-
zation and communication (cell–cell junction organization,
integrin cell surface interactions, tight junction interactions),
and G protein signaling. Among genotoxicants compared to
nongenotoxicants, up-regulated pathways included DNA repair
(nucleotide excision repair, formation of incision complex
in GG-NER), protein kinase B signaling, programmed cell
death, G1/S DNA damage checkpoints, innate immune response
(interferon signaling, toll-like receptor signaling). Down-
regulated pathways included xenobiotic metabolism (phase I
and phase II metabolism), peptide hormone biosynthesis, cell–
cell organization and cell–cell communication, innate immune

Figure 3. Top 20 landmark gene features for prediction of (A) carcinogenicity, and (B) genotoxicity as ranked by variable importance (mean decrease in Gini
index) in the predictive models of transcriptional activity scores (TAS) >0:4 subset.
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response (complement cascade), and various hemostasis- and
metabolism-related pathways.

From the differentially scored pathways of carcinogenicity
(Excel Table S8) and genotoxicity (Excel Table S9), we identified
a reduced set consisting of the top 40 up-regulated and top 40
down-regulated pathways with Reactome categories as ordered by
the aggregated rankings, and visualized their enrichment scores
across profiles with TAS>0:2 in Figure S6A (top pathways differ-
entially enriched with respect to carcinogenicity) and Figure
S6B (genotoxicity). Hierarchical clustering of samples revealed
stratification by carcinogenicity status, with Cluster 1 signifi-
cantly enriched for carcinogens compared to Cluster 2 (Fisher
test p-value = 0:0073), and an even stronger stratification by geno-
toxicity status, with Cluster 1 significantly enriched for genotoxi-
cants compared to Cluster 2 (Fisher test p-value= 7:36× 10−7).

Comparison of L1000 Signatures of Carcinogenicity and
Genotoxicity with Signatures from Drugmatrix
We tested for enrichment of the Drugmatrix-derived signatures
of carcinogenicity and genotoxicity against our L1000-based dif-
ferential signatures of carcinogenicity and genotoxicity (see
Excel Table S10). Both the directional concordance of signatures
(column “direction_match,” e.g., are the genes up-regulated
by carcinogens in Drugmatrix also up-regulated in L1000?) and
the significance of signature enrichment (column “FDR.q.val”)
were measured. Significant similarities were observed between

signatures derived from Drugmatrix low-dose rat primary hepato-
cyte cell cultures and our L1000 profiles. For example, the signa-
ture of up-regulated genes in response to low-dose carcinogens in
cell cultures (“UP_CARC_CELL_LOWDOSE”) was enriched in
the L1000-profiled carcinogen subsets at TAS>0:4, 0.3, and 0.2
(FDR<0:05). Conversely, the signature of down-regulated genes
in response to low-dose carcinogens in cell cultures (“DN_
CARC_CELL_LOWDOSE”) was enriched in the L1000-profiled
noncarcinogen subsets at TAS>0:2 and 0 (FDR<0:05). Sim-
ilarly, signature of genotoxicants in the Drugmatrix cell cultures
(“UP_GTX_CELL_LOWDOSE”) was enriched in the L1000-
profiled genotoxicant subsets at TAS>0:4, 0.3, and 0. When
repeating the analysis for signatures derived from all Drugmatrix
cell culture profiles (including high doses), signatures of genotox-
icity were directionally consistent with L1000 profiles (in all eight
relevant tests), but signatures of carcinogenicity were inconsistent,
and in fact sometimes behaved in the opposite direction (directions
matched according to expectation in two out of eight relevant
tests). For example, the Drugmatrix signature “UP_CARC_CELL”
was enriched among noncarcinogens in the L1000 TAS>0:4 sub-
set. This inconsistency is likely due to the use of extremely high
doses for some of the chemicals in the Drugmatrix cell culture pro-
files. For reference, the mean dose in Drugmatrix cell culture pro-
files was ∼ 3,000 lM, and the maximum dose was 180mM. In
contrast, the maximum dose among L1000 profiles was 40 lM.

Next, we compared signatures derived from the Drugmatrix
in vivo rat liver profiles to the L1000 profiles. For carcinogenicity,

Figure 4. Dot plot of probabilities of predicted classes for hold-out chemicals in the transcriptional activity score (TAS) >0:4 subset. Point outline colors repre-
sent actual class labels (carcinogenic vs. noncarcinogenic, genotoxic vs. nongenotoxic). Point shapes represent dose ranks (dose rank 6 represents the highest
dose level for each chemical). x-Axis positions of points represent predicted probability of class “Positive” (carcinogenic in left column or genotoxic in right
column), e.g., at the cutoff of 0.5 (vertical line), instances with values >0:5 are predicted “Positive,” and those with <0:5 are predicted “Negative."
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the signature of down-regulated genes in response to carcinogens
(“DN_CARC_LIVER”) was correctly enriched among noncarci-
nogens in L1000 TAS>0:4, 0.3, 0.2, and 0 with FDR<0:05.
Similarly, the signature of up-regulated genes in response to carci-
nogens (“UP_CARC_LIVER”) was marginally enriched among
L1000 TAS>0:4 (FDR=0:06), and TAS>0:3 (FDR=0:09) car-
cinogens. On the other hand, the signatures of genotoxicity were
largely not enriched in the right direction (e.g., “DN_GTX_
LIVER” shows enrichment among genotoxicants of TAS>0:4).

To rule out the possibility that the observed signatures’ incon-
sistency was due to platform differences—since the Drugmatrix
data were microarray-based, while our data were L1000-based—
we compared Drugmatrix cell culture to Drugmatrix liver signa-
tures of genotoxicity (both microarray based). We found that the
down-regulated genotoxicant signature in liver was also behaving
in the opposite direction compared to the cell culture signature
(Excel Table S11A,B). This finding suggests that the signatures’
inconsistency between liver and cell line was likely due to differen-
ces between in vitro and in vivo responses to exposure rather than
to differences in the profiling platform. Upon detailed inspection of
the Drugmatrix liver signatures, we identified an enrichment of
genes related to metabolism in both the up- and down-regulated
gene signatures (lipid metabolism, cholesterol biosynthesis, Phase
I metabolism in “UP_GTX_LIVER,” amino acid metabolism, fatty
acid metabolism in “DN_GTX_LIVER”), supporting the conclu-
sion that there may be substantial differences between metabolic
activities in in vitro and in vivo models (Figure S7).

In summary, L1000-derived signatures of carcinogenicity and
genotoxicity were concordant with Drugmatrix low-dose cell cul-
ture signatures but inconsistent with Drugmatrix liver signatures,
with the differences largely driven by discrepancies in the expres-
sion of certain metabolism-related genes between in vitro and
in vivo exposures.

Comparison of L1000 Signatures of Carcinogenicity and
Genotoxicity with Drug Perturbation Signatures in the
Connectivity Map
The availability of the CMap offered the opportunity to compare our
profiles to a much larger database of pharmacologically annotated
signatures and allowed us to predict MoAs or pharmacological prop-
erties based on signature similarity. To this end, we first computed
the similarity of our signatures to each signature in the CMap using
connectivity scores (see “Methods” section). We then identified the
CMap signatures that showed significant difference in connectivity
scores (FDR<0:05) between carcinogens and noncarcinogens and
between genotoxicants and nongenotoxicants. The top CMap hits
are summarized at the level of PCLs in Excel Table S12 (carcinoge-
nicity) and Excel Table S13 (genotoxicity) and visualized in Figure
5, and at the level of individual chemical perturbations in Excel
Table S14 (carcinogenicity) and Excel Table S15 (genotoxicity).

Focusing on the significantly differential PCLs across all TAS
subsets (TAS>0:2, 0.3, 0.4), we found that carcinogens, com-
pared to noncarcinogens, were significantly more connected to
drug classes consisting of topoisomerase inhibitors, DNA synthe-
sis inhibitors, and ribonucleotide reductase. Genotoxicants, com-
pared to nongenotoxicants, were significantly more connected to
the three aforementioned drug classes, as well as to cyclin-
dependent kinase inhibitors, aurora kinase inhibitors, and ubiqui-
tin specific peptidases (Figure 5).

Characterizing Aryl Hydrocarbon Receptor–Mediated
Response in L1000 Gene Expression Profiles
Carcinogens and genotoxicants are sometimes recognized by cellu-
lar receptors such as the AhR. Given that the AhR is an important

mediator of the toxicity of many chemicals represented in our data-
set, we sought to investigate the effects of AhR-activated chemicals
in terms of known AhR-regulated gene expression and the similar-
ity of transcriptomic profiles among subgroups of AhR agonists.

The L1000 profiles exhibited consistent enrichment of
AhR-related gene set activity among chemicals labeled as
AhR-active in several Tox21 reporter assays, namely, “HTS_
ACTIVE.agonism_AhR” (p-value= 2:9× 10−7), “HTS_ACTIVE.
cytotoxicity_AhR/agonism” (p-value= 1:5× 10−4), and “ATG_Ahr_
CIS_up” (p-value= 0:006) (Figure 6A).

Next, we examined an expert-curated set of AhR-related
chemicals (Group: “Sherr_AHR_agonist”). Based on the similar-
ity of their gene expression profiles as measured by the connec-
tivity scores, we found two functionally distinct classes of AhR-
related chemicals (Figure 6B). Cluster 1 contained five profiles
(out of six) of perturbation by benzo(a)pyrene, a strong AhR ago-
nist and known genotoxicant. Cluster 2 was enriched with pro-
files of strong exogenous AhR ligands, most with potent toxic
effects, including DMBA and TCDD. It is not surprising that
many of these chemicals also had high in vitro transcriptional
bioactivity (high TAS). Interestingly, profiles of indoxyl sulfate
clustered with this group of strong AhR agonists (Cluster 2).

Carcinogenome Portal: A Framework for Data Query
and Visualization
All data described in this manuscript are available for public
access. Data processed under the standard CMap-L1000 pipeline
are available under https://clue.io/data/CRCGN_ABC. To facili-
tate the interactive querying of the downstream analysis results
produced by this study, we developed a web portal (https://
carcinogenome.org/HEPG2). The query and visualization func-
tionalities supported by the portal include differential expression,
gene set enrichment, and connectivity analysis against CMap sig-
natures. This interface supports both marker-centered (genes, path-
ways, CMap signatures) and chemical-centered queries. For
instance, one can find the top gene markers and pathways regulated
by a particular perturbation, identify the top chemicals that up-
regulate a particular gene or pathway of interest, or find CMap
chemicals or chemical groups that are most similar to the profiles
of a particular perturbation. In addition, the portal supports bulk
query and visualization of groups of perturbations in the form of
heatmaps.

Discussion

Prediction of Carcinogenicity and Genotoxicity
The results from the prediction of carcinogenicity and genotoxicity
experiments provide strong evidence that transcriptional bioactivity
as captured by TAS had a high impact on the classifier perform-
ance. In fact, while absolute levels of bioactivity were not associ-
ated with carcinogenicity in our experiments, a sufficiently high
bioactivity was necessary to elicit enough transcriptional signal to
use a chemical's expression profile for carcinogenicity prediction.
Thus, when limiting to profiles with high TAS, the performance of
our predictive models drastically improved. Among highly bioac-
tive profiles (TAS>0:4), our classifiers yielded mean AUC of
72.2% for prediction of carcinogenicity (Figure 2A), and 82.3% for
prediction of genotoxicity (Figure 2B). These results confirm that
short-term in vitro gene expression profiles of chemical perturba-
tions, given sufficient transcriptional bioactivity, can accurately
predict long-term chemical carcinogenicity, and to a greater extent,
genotoxicity.

Of notice, when we applied our genotoxicity classifier to the
prediction of unlabeled chemicals, the top ranked predicted
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genotoxicant was indoxyl sulfate, which is an endogenous trypto-
phan metabolite. Indoxyl sulfate has been shown to activate p53
expression through reactive oxygen species production and is a
source of endogenous oxidative DNA damage (Shimizu et al.
2013). While indoxyl sulfate may not necessarily be considered a
genotoxicant as it is a uremic solvent found in low concentrations
(1–5 lM) in the human serum normally, it activates the AhR,
inducing cytochrome P450 enzymes. which metabolize other sub-
strates, including mutagenic intermediates (see “Characterizing
Aryl Hydrocarbon Receptor–Mediated Response in L1000 Gene
Expression Profiles” in the “Results” section) (Shashar et al. 2017;
Schroeder et al. 2010; Shivanna et al. 2016). Thus, prediction of
indoxyl sulfate as a genotoxicant may be due to transcriptional
activation of shared pathways involved in metabolism of geno-
toxic chemicals.

In Vitro Dose Recommendation
To boost the effective sample size used in classification, we out-
line the following dose selection strategy for improving bioactiv-
ity of in vitro gene expression profiles.

The selection of doses in short-term acute exposures for pre-
diction of long-term in vivo phenotypes is a challenging task. In
this experiment, we chose to adopt a standard six-dose titration,

starting from 40 lM or 20 lM, depending on source of chemi-
cals. The sole exception to the standard dosing was TCDD,
whose starting concentration was 50 nM efficiency of standar-
dized dosing using the L1000 platform.

One alternative dosing scheme is to determine unique doses
for each chemical using the MTT assay. For instance, a previous
study of genotoxicity prediction based on in vitro experiments
selected doses based on a MTT assay resulting in 80% viability at
72 h incubation, or maximum dose of 2mM in the case of lack of
cytotoxicity (Magkoufopoulou et al. 2012). Some chemicals used
in that study were administered at doses that vastly exceeded the
40-lM or 20-lM dose limit adopted in our experimental setup.
Furthermore, the lack of plateau effect in dose response as a func-
tion of TAS (proxy for bioactivity) suggests that doses exceeding
the 40-lM or 20-lM threshold may indeed yield profiles with
higher bioactivity and increase the power to detect gene and path-
way markers for prediction of carcinogenicity and genotoxicity
without experiencing saturation effects (response plateauing) or
excessive cell death. Although standardizing dosage across chem-
icals was the logistically and cost-effective solution for this
experiment, going forward, MTT assays are highly recommended
for maximizing biological signal across transcriptional profiles.
Estimation of the appropriate in vitro dose from toxicokinetic
modeling of the in vivo doses tested in animal bioassays, when

Figure 5. Connectivity scores of top Connectivity Map (CMap) Perturbagen classes with differential connectivity [false discovery rate ðFDRÞ<0:05] to carci-
nogens vs. noncarcinogens and genotoxicants vs. nongenotoxicants grouped by transcriptional activity scores (TAS) subsets. The lower, middle, and upper
hinges of box plots correspond to the 25th, 50th (median), and 75th percentiles, respectively. The upper and lower whiskers extend to the smaller and largest
value at most 1.5 × IQR (interquartile range) from the hinge, and data points beyond the whiskers are represented as dots.
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available, is another viable alternative, as shown in Figure 1D
and associated discussion. We offer these dose recommendations
in the context of accurate hazard prediction, for which this study
has shown that sufficient signal (transcriptional bioactivity) is
necessary. For effective risk assessment and translation, human
relevant doses should be considered.

Acute vs. Chronic Response
Through analysis of TASs between carcinogens and noncarcino-
gens (Figure 1C), we observed that long-term carcinogenicity, as
established from long-term in vivo rodent studies, had no effect
on transcriptional bioactivity in our short-term assay (Figure 2A).
This observation supports the conclusion that bioactivity as
defined by TAS at less than 40 lM is not associated with

carcinogenicity, and consequently, a short-term chemical pertur-
bation with minimal transcriptional response cannot be assumed
safe.

While TAS alone was not predictive of carcinogenicity, it was
instrumental to the selection of those compounds with sufficient
bioactivity to allow us to build an accurate gene expression–based
classifier of carcinogenicity (up to 72.2% AUC). It was also instru-
mental to capturing important MoAs of carcinogenicity, as shown
by our pathway enrichment analysis, which highlighted the up-
regulation of interferon-a=b response, cell death, DNA repair, and
transcriptional regulation (RNA polymerase I, II, III) pathways in
response to carcinogen exposure, as well as down-regulation of
phase I and phase II metabolism and cell–cell organization and
communication pathways. Overall, we observed a stronger signal
of genotoxicity compared to carcinogenicity, which is to be

Figure 6. Investigation of profiles of aryl hydrocarbon receptor (AhR)–related chemical perturbations. (A) Profiles with AhR activity ranked by median gene
set scores of AhR target gene lists. (B) AhR-related profiles clustered by connectivity scores.
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expected, as the latter is a more heterogeneous phenotype and
thus harder to capture as a binary distinction; this is also evi-
denced by the higher accuracy of the genotoxicity classifier
(82.3%) as well as by the higher TAS among genotoxicants
compared to nongenotoxicants.

Higher TAS levels were also associated with the identification
of more stably enriched pathways across TAS subsets when per-
forming differential enrichment analysis between carcinogens
and noncarcinogens, and between genotoxicants and nongeno-
toxicants (see “Pathway Enrichment Analysis to Characterize
Modes of Actions of Carcinogenicity and Genotoxicity” section).
The increase in the number and in the overlap of significant path-
ways at higher TAS is likely due to the associated stronger signal.
At lower TAS, the larger number of false positives increased the
noise level and heterogeneity of the transcriptional response, and
likely led to the reduction in the number of pathways found to be
significantly enriched.

High-Resolution Characterization of Chemical
Classes’ Response
Given the presence of several AhR ligands in our panel, we used
this set of chemicals to assess our platform’s ability to go beyond
supervised classification of a binary phenotype and toward taxon-
omy discovery within classes of related compounds (Figure 6B).
Interestingly, in this analysis indoxyl sulfate was clustered with
the group of strong AhR agonists (Cluster 2). While this chemical
is an endogenous AhR ligand, it can be considered a uremic toxin
that is observed at elevated levels in patients with chronic renal
failure (Niwa et al. 1999). Cluster 3 contained endogenous AhR
ligands (l-kynurenine, indole-3-carbonyl, kynurenic acid, xan-
thurenic acid, and cinnabarinic acid). Since l-tryptophan is not an
AHR ligand, its presence in this latter group suggests that it is
metabolized to one of the kynurenine pathway metabolites that
are AhR ligands (L-kynurenine, kynurenic acid, xanthurenic
acid, and cinnabarinic acid).

These results show promise for our platform to be used not
only as a general predictor of active transcriptional pathways
such as the AhR signaling pathway, but also to distinguish, with
finer granularity, classes of AhR agonists according to the tran-
scriptomic profile they induce. Furthermore, the fact that the
L1000 profiles exhibited consistent enrichment of AhR-related
gene set activity among chemicals labeled as AhR-active in sev-
eral Tox21 reporter assays validates the ability of unbiased gene
expression profiling to accurately capture end points from more
specific and targeted assays such as those in the Tox21 library.

Implication of Findings in Context of Tumor Initiation
and Promotion
Chemical carcinogens can be classified into tumor initiators and
promoters. Initiators cause changes to the DNA (mutagens) and
promoters drive the proliferation of the cell, typically by interact-
ing with receptors to affect pathways leading to cell proliferation.
We derived labels of carcinogenicity based on long-term rodent
studies, which includes both tumor initiators and promoters.
However, it is important to understand that we used short-term
human cell line gene expression patterns to predict long-term
rodent carcinogenicity. Pathways relevant to tumor initiation
were accurately captured by the short-term in vitro gene expres-
sion data (DNA repair, DNA damage, etc.). As for tumor promo-
tion, promoters typically interact with receptors to mediate cell
proliferation, and our cell culture model contained a subset of
receptors that mediate these processes (Yueh et al. 2014).
However, one limitation is that culture conditions were already a
promotion environment (high growth) that might limit the

detection of promoting agents. Another limitation is that tumor
promoters mediated by receptors not expressed in a culture sys-
tem may elicit reproducible but not biologically accurate patterns
of gene expression in the short-term in vitro assay, although they
may be correctly classified by our machine-learning approach.
Mechanistic expert judgement will need to be applied to evaluate
the relevance of these findings to human carcinogenicity.

Interfacing with the Connectivity Map
One of the important features of the perturbation experiment data
we generated is the data’s support for guilt by association infer-
ence of chemical function by signature-based comparison to the
CMap’s PCLs, as illustrated in Figure 5.

For example, we showed that carcinogens were significantly
more connected than noncarcinogens to the PCL consisting of to-
poisomerase inhibitors. These represent a specific class of DNA
synthesis inhibitors, which are mainly recognized as chemothera-
peutic drugs that preferentially inhibit the topoisomerase enzymes
(commonly topoisomerase I or II) in cancer cells to slow their rate
of replication. Topoisomerase I or II introduce single- or double-
strand DNA breaks in cells undergoing replication, and form
topoisomerase-DNA complexes. Most topoisomerase inhibitors
function by trapping these complexes, leading to increased strand
breaks but incomplete DNA replication, subsequently provoking
DNA damage response and DNA repair (Pommier et al. 2006;
Pommier 2013; Wang and Eastmond 2002). Thus, DNA damage
response induced by topoisomerase inhibitors is expected to mimic
the response to genotoxic carcinogens.

Other relevant PCLs also exhibit shared MoAs with carcino-
gens and genotoxicants. Aurora kinase inhibitors play a major
role in cell cycle regulation through the induction of G1 arrest
and apoptosis (Bavetsias and Linardopoulos 2015). Ubiquitin-
specific peptidases, specifically USP24, have been shown to play
a role in DNA damage response (Zhang and Gong 2015).

Challenges and Future Developments
This experiment aimed to accelerate short-term in vitro testing
approaches to predict long-term chemical carcinogenicity. We
showed that short-term in vitro gene expression profiling is not
only capable to accurately predict carcinogenicity and genotoxic-
ity, but is also useful to characterize important mechanisms of car-
cinogenic response, particularly DNA damage and repair, and
changes in cell cycle and cell–cell organization and communica-
tion. Other general biological processes that may be relevant for
carcinogenic response, including inflammatory response, immune
dysfunction, metabolic disruption, and endocrine disruption, req-
uire further investigation in other in vitro contexts.

The choice of HepG2 as our primary cell line model was
driven by the abundance of chemical annotations for liver carci-
nogenicity and the appropriateness of HepG2 for the study of
liver toxicity. However, there are limitations in its use. Firstly,
the expression of genes involved in phase I and phase II metabo-
lism vary between passages, and results relating to xenobiotic
metabolism may be difficult to determine (Soldatow et al. 2013);
this was also seen in the comparison of our genotoxicity-related
signatures to Drugmatrix liver signatures. One potential contribu-
tion to this effect is the low bioactivation capacity in HepG2 com-
pared to in vivo. As an alternative, the hepatoma cell line,
HepaRG, which has a liver-like bioactivation, could be used as
an in vitro liver model for studying carcinogens and genotoxi-
cants (Guillouzo et al. 2007). One study has shown that while
HepG2 performs better in discriminating signatures between gen-
otoxic and nongenotoxic carcinogens, HepaRG is a more suitable
in vitro liver model for biological interpretation of effects of
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chemical exposures (Jennen et al. 2010). Secondly, since HepG2
is a cancer cell line, the exposures of carcinogens in this line may
show differences as compared to a nontransformed cell line. For
the purpose of predictive modeling, we contend that these cell
line–specific nuances may be overlooked as long as the perform-
ance of the classifier is adequate.

Other cell line candidates for follow up studies should include
more realistic hepatocyte models, such as induced pluripotent
stem cells–derived hepatocytes, or organoids (Davidson et al.
2015; Underhill and Khetani 2018). Alternatively, hepatic stem
cells such as oval cells could be considered given that the stem
cell theory of cancer initiation and maintenance is well supported
(Fábián et al. 2013; Tan et al. 2006).

While liver carcinogenicity prediction was the adverse pheno-
type of choice for this study, this experiment provided us with
many valuable insights to facilitate future experiments, including
the logistics of large chemical panels procurement, and chemical
and dose selection for tissue-specific carcinogenicity. It also set
the stage for in vitro based exposure studies of additional adverse
phenotypes. For instance, we initiated the in vitro screening of
mammary gland carcinogenicity through the use of a nontumori-
genic human mammary epithelial cell line, MCF10A and p53-
deficient MCF10A. The experimental and computational pipeline
we established, paired with the cost-effective technology we used
for chemical exposure and gene expression profiling, paves the
way for the screening of large chemical panels for exposure-
based experiments in other organ, disease, and adverse outcome
contexts.

Conclusions
Long-term tests for chemical carcinogens based on epidemiol-
ogy and rat studies are expensive and time-consuming and not
feasible for scaling to a large number of chemicals. In this
study, we detailed a high-throughput gene expression profiling
of >300 liver carcinogens and noncarcinogens in a short-term
in vitro exposure model. These gene expression profiles, given
sufficient transcriptional bioactivity, were capable of accurate
prediction of long-term carcinogenicity and even more accurate
prediction of genotoxicity. Pathway enrichment analysis rev-
ealed similarities between pathway level response captured by
the short term in vitro exposures and known MoAs of carcino-
genesis, particularly genotoxic mechanisms such as DNA dam-
age and repair.
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